首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1647篇
  免费   124篇
  国内免费   1篇
电工技术   17篇
综合类   2篇
化学工业   415篇
金属工艺   15篇
机械仪表   31篇
建筑科学   66篇
矿业工程   1篇
能源动力   77篇
轻工业   179篇
水利工程   6篇
石油天然气   6篇
无线电   136篇
一般工业技术   286篇
冶金工业   40篇
原子能技术   21篇
自动化技术   474篇
  2024年   4篇
  2023年   13篇
  2022年   17篇
  2021年   102篇
  2020年   48篇
  2019年   88篇
  2018年   68篇
  2017年   67篇
  2016年   82篇
  2015年   67篇
  2014年   83篇
  2013年   126篇
  2012年   125篇
  2011年   145篇
  2010年   114篇
  2009年   103篇
  2008年   92篇
  2007年   69篇
  2006年   65篇
  2005年   46篇
  2004年   50篇
  2003年   28篇
  2002年   15篇
  2001年   17篇
  2000年   20篇
  1999年   10篇
  1998年   11篇
  1997年   19篇
  1996年   9篇
  1995年   7篇
  1994年   4篇
  1993年   7篇
  1992年   3篇
  1991年   6篇
  1990年   6篇
  1988年   4篇
  1985年   7篇
  1984年   1篇
  1983年   5篇
  1982年   1篇
  1981年   1篇
  1980年   4篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   3篇
  1973年   1篇
排序方式: 共有1772条查询结果,搜索用时 359 毫秒
991.
Pt–In/Nb2O5 catalysts were investigated using temperature-programmed reduction (TPR) and time differential perturbed angular correlation (TDPAC) experiments. The results indicated the presence of In–O surface complexes for low loading In/Nb2O5 and Pt–In/Nb2O5 catalysts after calcination. These complexes did not form a In2O3 crystalline phase. After reduction of the Pt–In/Al2O3 catalyst, In is present in different states. A fraction of In atoms is bonded to niobia surface, as a surface complex that does not show crystalline structure similar to bulk In2O3. Other fraction of In atoms interacts with platinum, in the form of an alloy, in locations that present trigonal symmetry.  相似文献   
992.
Fabio Fabri  Wanda de Oliveira 《Polymer》2006,47(13):4544-4548
Half-sandwich samarium(III) diketiminate bromide was successfully synthesized and was shown to be active in methyl methacrylate (MMA) polymerization. The effects of temperature, polymerization time and catalyst concentration were studied. Activities of ca. 18 kg of polymethacrylate (PMMA) per mol of samarium per hour were obtained under optimum conditions (0 °C and a MMA/catalyst molar ratio of 100/1), giving a polymer with a molar mass Mn>24,000 g mol−1 and a molar mass distribution (Mw/Mn)<1.4. After 1 h of polymerization, conversions of MMA as high as 96% were observed.  相似文献   
993.
Thermosensitive composite hydrogels containing various amounts of sodium montmorillonite (NaMM) and poly(N‐isopropylacrylamide) (pNIPAAm) were synthesized. Their equilibrium degree of swelling (DS) was measured in NaCl solutions of different ionic strength and at various temperatures. The DS decreased when increasing the clay content and no substantial shift in the phase transition temperature was noticed. The composite hydrogels investigated had a NaMM content ranging between 1.0 and 5.7 wt % (in 0.1M NaCl at 25°C). A considerable enhancement in the response to thermal stimuli was observed for NaMM contents >2–3 wt %. It is suggested that when the NaMM concentration approaches a critical value, the clay platelets can inhibit the formation of the hydrophobic skin layer that hinders shrinking in conventional pNIPAAm hydrogels. The effect of montmorillonite on the mechanical properties of the hydrogels was investigated by uniaxial compression tests, which showed that the modulus increases with the NaMM content. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1964–1971, 2004  相似文献   
994.
The effect of lithium (ex LiNO3) on the metallic dispersion of 0.8 wt% Pt/Al2O3 catalysts, prepared by different impregnation techniques, was investigated by temperature programmed reduction (TPR) and the frontal method of H2 chemisorption. The temperature at which platinum precursor is reduced at a maximum rate (543 K) was not modified by 0.1 wt% lithium addition, whatever the preparation technique used. The dispersion values of platinum (70–90%), after reduction at 773 K, were slightly dependent on the preparation procedure. After the addition of 0.8 wt% lithium the TPR profile presented two well defind peaks and the dispersion values (20–50%), measured after reduction at 773 K, presented a significant decrease. The results are linked with the presence of residual nitrate ions, that had not been eliminated during calcination at 773 K in air, but had been decomposed under the reducing atmosphere of the TPR experiment.  相似文献   
995.
An effective strategy to increase the properties of poly (lactic acid) (PLA) is the addition of carbon nanotubes (CNT). In this work, aiming to improve the surface adhesion of PLA and CNT a new compatibilizer agent was prepared by reactive processing, PLA grafted maleic anhydride (PLA-g-MA) using benzoyl peroxide and maleic anhydride. The effectiveness of the PLA-g-MA as a compatibilizer agent was verified for PLA/PLA-g-MA/CNT nanocomposites. PLA and PLA-g-MA samples were characterized by Fourier transform infrared spectroscopy (FT-IR) to confirm the grafting reaction of maleic anhydride on PLA chains and by rheological analysis to prove the changes in the matrix PLA after the graphitization reaction. Thermal (differential scanning calorimetry and thermogravimetric analysis), mechanical tests (Izod impact strength and tensile test), and morphological characterization were used to verify the effect of the compatibilizer agent. The preparation of PLA-g-MA by reactive extrusion processing proved satisfactory and the nanocomposites presented good thermal and mechanical properties. The addition of the PLA-g-MA also contributed to the greater distribution of CNT and can be used as an alternative for the production of PLA/CNT nanocomposites.  相似文献   
996.
The use of biodegradable polymers is an interesting way to reduce the polymeric waste accumulation in the environment. However, the addition of fillers to biodegradable polymer matrices may decrease their biodegradability. Glassy carbon (GC) is a promising carbon material that can be employed as a filler in the production of antistatic packaging utilized to protect electronic components. The use of a biodegradable polymeric matrix such as poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) can be an excellent alternative for the preparation of green composites to be used in these packages. This work aims to evaluate the effect of the GC addition and the GC particle size on the biodegradability of the PHBV matrix, as well as to study the result of the employment of a previous photodegradation treatment on the biodegradation in aqueous medium of PHBV/GC composites. Scanning electron microscopy, residual weight measurement (%) and surface roughness showed that GC does not interfere negatively with PHBV biodegradability. Differential scanning calorimetry analysis and residual weight measurement permitted to suggest that the increase in the crystallinity degree of PHBV and PHBV/GC samples occasioned by the ultraviolet radiation hindered the water and enzyme access to the bulk of the materials, decreasing the biodegradability.  相似文献   
997.
In the present work, poly (lactic acid)/thermoplastic starch/gelatin sheets were produced by calendering–extrusion process and silver nanoparticles (AgNPs, synthesized by chemical reduction with d ‐glucose), were incorporated at sheet surfaces to promote antimicrobial activity. A gelatin solution containing AgNPs was enzymatically crosslinked as a layer at sheets surface using transglutaminase. AgNPs presented 63 nm (z average size) and spherical shape (scanning electron microscopy, SEM) while morphology analysis showed that sheets presented internal porosity. Mechanical properties (Young modulus, elongation at break, and tensile strength) and water vapor permeability presented significant difference in function of gelatin amount added to sheets formulation due to increased internal porosity. Antimicrobial activity was demonstrated against Bacillus cereus, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa for the AGNPs solution as well as for the surface treated films. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43039.  相似文献   
998.
999.
Nanocomposites based on high density polyethylene (HDPE)/linear low density polyethylene (LLDPE) blend were prepared by melt compounding in a twin‐screw extruder using organoclay (montmorillonite) as nano‐filler and a 50/50 wt% mixture of maleic anhydride functionalized high density polyethylene (HDPE‐g‐MA) and linear low density polyethylene (LLDPE‐g‐MA) as the compatibilizing system. The addition of a maleated polyethylene‐based compatibilizing system was required to improve the organoclay dispersion in the HDPE/LLDPE blend‐based nanocomposite. In this work, the relationships between thermal properties, gas transport properties, and morphology were correlated. The compatibilized nanocomposite exhibited an intercalated morphology with a small number of individual platelets dispersed in the HDPE/LLDPE matrix, leading to an significant decrease in the oxygen permeation coefficient of the nanocomposites. A decrease in the carbon dioxide permeability and oxygen permeability with increase of nanoclay was observed for the compatibilized nanocomposites. The carbon dioxide permeability of the compatibilized nanocomposites was lower than the carbon dioxide permeability of the uncompatibilized nanocomposites even with the low intrinsic barrier properties of the compatibilizer. These effects were attributed to a good dispersion of the inorganic filler, good wettability of the filler by the polymer matrix, and strong interactions at the interface that increased the tortuous path for diffusion. Theoretical permeability models were used to estimate the final aspect ratio of nanoclay in the nanocomposite and showed good agreement with the aspect ratio obtained directly from TEM images. POLYM. ENG. SCI., 56:765–775, 2016. © 2016 Society of Plastics Engineers  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号